Abstract

Analytical performance estimation of a permanent magnet (PM) motor requires an accurate equivalent circuit model. In a lumped electrical model of a PM motor, resistance and inductances appear as passive elements, which are used to represent the phase winding resistance, inductance, core loss, etc. There is currently no available standard for parameter measurement of permanent magnet (PM) motors. In the literature, there are many studies on inductance measurement. However, they are applied to different types of motors. The purpose of this study is to evaluate those different inductance measurement methods, on the same motors, to identify whether they lead to the same result. Also, it was aimed to find out the difficulties involved in the measurement process. This study concentrates on determining the d-axis and q-axis inductances of two different surface-mount PM motors at standstill and under running conditions. The standstill measurement methods evaluated include the “current decay” method and the “DC inductance bridge” method as well as more common methods. The dependence of the inductances on the current magnitude, frequency, and excitation signal waveform is investigated. Measurements with PWM and sinusoidal AC voltage excitation are found to give similar results. The tests indicated that the “current decay” method is prone to measurement errors especially when the phase resistance is low. It is discovered that inductance measurements from standstill tests are independent of frequency for all practical purposes. Next, the same inductances are measured, while the test motors are running. The methods considered include; inductance measurement from no-load test, zero power factor load test, and unity power factor load test; while the machine is in generating mode. Furthermore, a new inductance measurement method is introduced where the measurement is made while the test motor is driven with a vector-controlled drive. Finally, inductance measurement results from different standstill tests and running tests are compared and evaluated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.