Abstract

In this work, the role of Lewis acid–base (LAB) interaction on the stereoselectivity of the Diels–Alder (DA) reaction has been studied by DFT in gas and solution (dichloromethane) phases. The calculations were performed at the B3LYP/6-311G++ (d, p) level. Two different series of DA reactions were investigated: (1)—three mono-substituted cyclopentadienes + dimethyl(vinyl)borane; (2)—five α,β-unsaturated carbonyl compounds + cyclopenta-2,4-dien-1-yldimethylborane. The reacting diene and dienophile pairs were chosen to restrict LAB interaction to the exo reaction pathway. It was found that in some of the examined cases, the favorable LAB interaction is so strong that it can lead to a completely exo-selective DA reaction. Furthermore, a novel multistep synthetic method was hypothesized for preparing exo cycloadduct with near 100% stereoselectivity. Our results can open up new avenues toward the rational design of exo-selective DA reactions for synthesizing novel bioorganic compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.