Abstract

Muscle regulatory factors activate myogenesis in all vertebrates, but their role has been studied in great detail only in the mouse embryo, where all but myogenin--Myod, Myf5 and Mrf4--are sufficient to activate (albeit not completely) skeletal myogenesis. In the zebrafish embryo, myod and myf5 are required for induction of myogenesis because their simultaneous ablation prevents muscle development. Here we show that mrf4 but not myog can fully rescue myogenesis in the myod/myf5 double morphant via a selective and robust activation of myod, in keeping with its chromatin-remodelling function in vitro. Rescue does not happen spontaneously, because the gene, unlike that in the mouse embryo, is expressed only at the onset of muscle differentiation, Moreover, because of the transient nature of morpholino inhibition, we were able to investigate how myogenesis occurs in the absence of a myotome. We report that in the complete absence of a myotome, subsequent myogenesis is abolished, whereas myogenesis does proceed, albeit abnormally, when the morpholino inhibition was not complete. Therefore our data also show that the early myotome is essential for subsequent skeletal muscle differentiation and patterning in the zebrafish.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.