Abstract

Chronic hypoxia in the tubulointerstitium serves as a final common pathway in progressive renal disease. Circumstantial evidence suggests that hypoxia-inducible factor (HIF)-1 in the ischemic tubules may be functionally inhibited in a chronic kidney disease (CKD) milieu. In this study, we hypothesized that indoxyl sulfate (IS), a uremic toxin, impairs the cellular hypoxic response. In human kidney (HK-2) proximal tubular cells, IS reduced the hypoxic induction of HIF-1 target genes. This effect was not associated with quantitative changes in the HIF-1α protein, but with functional impairment of the HIF-1α C-terminal transactivation domain (CTAD). Among factors that impeded the recruitment of transcriptional coactivators to the HIF-1αCTAD, IS markedly up-regulated Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) through a mechanism of post-transcriptional mRNA stabilization involving the extracellular signal-regulated kinase (ERK) 1/2 pathway. In vivo, disproportionate expression of HIF target genes was demonstrated in several CKD models, which was offset by an oral adsorbent, AST-120. Furthermore, administration of indole reduced the induction of angiogenic, hypoxia-inducible genes in rats with experimental heart failure. Results of these studies reveal a novel role of IS in modulating the transcriptional response of HIF-1 and provide insight into molecular mechanisms underlying progressive nephropathies as well as cardiovascular complications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.