Abstract

Scene recognition is a highly valuable perceptual ability for an indoor mobile robot, however, current approaches for scene recognition present a significant drop in performance for the case of indoor scenes. We believe that this can be explained by the high appearance variability of indoor environments. This stresses the need to include high-level semantic information in the recognition process. In this work we propose a new approach for indoor scene recognition based on a generative probabilistic hierarchical model that uses common objects as an intermediate semantic representation. Under this model, we use object classifiers to associate low-level visual features to objects, and at the same time, we use contextual relations to associate objects to scenes. As a further contribution, we improve the performance of current state-of-the-art category-level object classifiers by including geometrical information obtained from a 3D range sensor that facilitates the implementation of a focus of attention mechanism within a Monte Carlo sampling scheme. We test our approach using real data, showing significant advantages with respect to previous state-of-the-art methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.