Abstract
Identification of epilepsy patients with elevated risk for atrial fibrillation (AF) is critical given the heightened morbidity and premature mortality associated with this arrhythmia. Epilepsy is a worldwide health problem affecting nearly 3.4 million people in the United States alone. The potential for increased risk for AF in patients with epilepsy is not well appreciated, despite recent evidence from a national survey of 1.4 million hospitalizations indicating that AF is the most common arrhythmia in people with epilepsy. We analyzed inter-lead heterogeneity of P-wave morphology, a marker reflecting arrhythmogenic nonuniformities of activation/conduction in atrial tissue. The study groups consisted of 96 patients with epilepsy and 44 consecutive patients with AF in sinus rhythm before clinically indicated ablation. Individuals without cardiovascular or neurological conditions (n = 77) were also assessed. We calculated P-wave heterogeneity (PWH) by second central moment analysis of simultaneous beats from leads II, III, and aVR ("atrial dedicated leads") from standard 12-lead electrocardiography (ECG) recordings from admission day to the epilepsy monitoring unit (EMU). Female patients composed 62.5%, 59.6%, and 57.1% of the epilepsy, AF, and control subjects, respectively. The AF cohort was older (66 ± 1.1 years) than the epilepsy group (44 ± 1.8 years, p < .001). The level of PWH was greater in the epilepsy group than in the control group (67 ± 2.6 vs. 57 ± 2.5 μV, p = .046) and reached levels observed in AF patients (67 ± 2.6 vs. 68 ± 4.9 μV, p = .99). In multiple linear regression analysis, PWH levels in individuals with epilepsy were mainly correlated with the PR interval and could be related to sympathetic tone. Epilepsy remained associated with PWH after adjustments for cardiac risk factors, age, and sex. Patients with chronic epilepsy have increased PWH comparable to levels observed in patients with AF, while being ~20 years younger, suggesting an acceleration in structural change and/or cardiac electrical instability. These observations are consistent with emerging evidence of an "epileptic heart" condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.