Abstract
In the era of personalized medicine, interindividual differences in the magnitude of response to an exercise training program (subject-by-training interaction; "individual response") have received increasing scientific interest. However, standard approaches for quantification and prediction remain to be established, probably due to the specific considerations associated with interactive effects, in particular on the individual level, compared with the prevailing investigation of main effects. Regarding the quantification of subject-by-training interaction in terms of variance components, confounding sources of variability have to be considered. Clearly, measurement error limits the accuracy of response estimates and thereby contributes to variation. This problem is of particular importance for analyses on the individual level, because a low signal-to-noise ratio may not be compensated by increasing sample size (1 case). Moreover, within-subject variation in training efficacy may contribute to gross response variability. This largely unstudied source of variation may not be disclosed by comparison to a control group but calls for repeated interventions. A second critical point concerns the prediction of response. There is little doubt that exercise training response is influenced by a multitude of determinants. Moreover, indications of interaction between influencing factors of training efficacy lead to the hypothesis that optimal predictive accuracy may be attained using an interactive rather than additive approach. Taken together, aiming at conclusive inference and optimal predictive accuracy in the investigation of subject-by-training interaction entails specific requirements that are deducibly based on statistical principles but beset with many practical difficulties. Therefore, pragmatic alternatives are warranted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.