Abstract

ABSTRACT Stellar evolution calculations with variable abundance ratios were used to gauge the effects on temperatures, luminosities, and lifetimes in various phases. The individual elements C, N, O, Mg, Si, and Fe were included. Most of the effect relevant to integrated light models is contained in the temperature variable, as opposed to the time-scale or luminosity. We derive a recipe for including abundance-sensitive temperature effects that is applicable to existing isochrone grids. The resultant enhanced isochrones are incorporated into composite stellar population models and compared with galaxy data from the Sloan Digital Sky Survey. A severe oxygen–age degeneracy is apparent, 2–3 Gyr per 0.1 dex in [O/R], where R represents a heavy element such as Fe. Over the range of early-type galaxy velocity dispersion, the spans of all abundance ratios are reduced but the age range increases and becomes systematically older. Allowing Fe-peak elements the freedom to vary accentuates this increase of age span. Overall, these results sharpen the age–mass correlation known as downsizing but decrease the steepness of abundance ratio gradients. Both of these observations, in turn, imply a more robust contribution from gas-free mergers in the histories of typical elliptical galaxies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.