Abstract

The nanowires of the silicon oxide SiOx (x ≤ 2) are synthesized on an indium catalyst by the gas‐jet electron beam plasma chemical vapor deposition (GJ EBP CVD) method using a monosilane‐argon‐hydrogen mixture with the simultaneous supply of the oxygen into the vacuum chamber. The arrays of the aligned microropes (bundles) of nanowires are formed at the substrate temperatures of 200–335 °С. At the temperature of 160 °С the cocoon‐like structures of SiOx nanowires are synthesized. The obtained results are explained within the synthesis model suggested previously. The Fourier transform infrared (FTIR) transmittance spectra are recorded to study the chemical composition of the nanowires. It is shown that the nanowires synthesized at temperatures of 200–335 °С consist of SiOx with x = 1.93 ± 0.04. The arrays of the oriented microropes of the SiOx nanowires exhibit the intense photoluminescence at a room temperature with a maximum in a range of the energies from 2 to 3 eV. The photoluminescence spectra of the oriented microropes synthesized on silicon substrates with the indium catalyst are shifted toward lower energies from 2.7–2.8 to 2.4–2.5 eV at the changing growth temperatures from 200 to 335 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.