Abstract

The class of locally stationary processes assumes that there is a time-varying spectral representation, that is, the existence of finite second moment. We propose the α-stable locally stationary process by modifying the innovations into stable distributions and the indirect inference to estimate this type of model. Due to the infinite variance, some of interesting properties such as time-varying autocorrelation cannot be defined. However, since the α-stable family of distributions is closed under linear combination which includes the possibility of handling asymmetry and thicker tails, the proposed model has the same tail behaviour throughout the time. In this paper, we propose this new model, present theoretical properties of the process and carry out simulations related to the indirect inference in order to estimate the parametric form of the model. Finally, an empirical application is illustrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.