Abstract

Anaerobic fungi are potent lignocellulose degraders, but have not yet been exploited in this capacity, largely owing to their poor metabolic characterization. In the current study, a time course of fermentation was conducted to study the effect of the co-cultured methanogens on xylose metabolism by anaerobic fungi. The fermentation end-products from anaerobic fungal monoculture were H2 (6.7 ml), CO2 (65.7 ml), formate (17.90 mM), acetate (9.00 mM), lactate (11.89 mM), ethanol, and malate after 96 h fermentation. Compared to the monoculture, the end-products of co-culture shifted to more CO2 (71.8 ml) and acetate (15.20 mM), methane (14.9 ml), less lactate (5.28 mM), and hardly detectable formate and H2 at the end of fermentation. After 48 h, accumulated formate was remarkably consumed by co-cultured methanogens, accompanied by significantly increased acetate, CO2 and pH, and decreased lactate and malate. Xylose utilization, in both cultures, was similar during fermentation. However, the relative flux of carbon in hydrogenosomes in the co-culture was higher than that in the monoculture. In conclusion, the co-culture with methanogens enhanced "energy yields" of anaerobic fungi by removing the accumulated formate, decreased the metabolism in cytosol, for example, the lactate pathway, and increased the metabolism in hydrogenosomes, for example, the acetate pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.