Abstract
Ensembles of Exemplar-SVMs have been used for a wide variety of tasks, such as object detection, segmentation, label transfer and mid-level feature learning. In order to make this technique effective though a large collection of classifiers is needed, which often makes the evaluation phase prohibitive. To overcome this issue we exploit the joint distribution of exemplar classifier scores to build a taxonomy capable of indexing each Exemplar-SVM and enabling a fast evaluation of the whole ensemble. We experiment with the Pascal 2007 benchmark on the task of object detection and on a simple segmentation task, in order to verify the robustness of our indexing data structure with reference to the standard Ensemble. We also introduce a rejection strategy to discard not relevant image patches for a more efficient access to the data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.