Abstract

Independent component analysis (ICA) is a novel technique that calculates independent components from mixed signals. A hypothetical clinical application is to remove artifacts in EEG. The goal of this study was to apply ICA to standard EEG recordings to eliminate well-known artifacts, thus quantifying its efficacy in an objective way. Eighty samples of recordings with spikes and evident artifacts of electrocardiogram (EKG), eye movements, 50-Hz interference, muscle, or electrode artifact were studied. ICA components were calculated using the Joint Approximate Diagonalization of Eigen-matrices (JADE) algorithm. The signal was reconstructed excluding those components related to the artifacts. A normalized correlation coefficient was used as a measure of the changes caused by the suppression of these components. ICA produced an evident clearing-up of signals in all the samples. The morphology and the topography of the spike were very similar before and after the removal of the artifacts. The correlation coefficient showed that the rest of the signal did not change significantly. Two examiners independently looked at the samples to identify the changes in the morphology and location of the discharge and the artifacts. In conclusion, ICA proved to be a useful tool to clean artifacts in short EEG samples, without having the disadvantages associated with the digital filters. The distortion of the interictal activity measured by correlation analysis was minimal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.