Abstract

Incubation of J774 macrophages with mixtures of acetylated low-density lipoprotein (acLDL) and free cholesterol-rich phospholipid dispersions increases cellular cholesterol deposition 2–4-fold over that achieved with either acLDL or dispersions alone. Both free and esterified cholesterol accumulate in cells incubated with the mixture of acLDL and dispersions. A similar result is observed when acLDL is replaced by malondialdehyde-LDL. The enhanced deposition of cholesterol is not unique to J774 macrophages, as P388D, macrophages also accumulate more cholesterol when incubated with the mixture of acLDL and dispersions than either particle alone. A preincubation of the particles for at least 6 h prior to incubation with cells is required in order to observe maximal cholesterol delivery. Both dispersion free cholesterol and phospholipid accumulate in J774 cells, suggesting that a complex is formed between acLDL and dispersions which results in a cholestrol-rich acLDL/dispersion particle. Partial purification of the acLDL-dispersion complex revealed increases in the size distribution of the particles compared to acLDL and increases in free cholesterol and phospholipid contents. Cholesterol uptake from the mixture of acLDL and dispersions was saturable and the enhanced cellular uptake of both cholesterol and phospholipid from the complex could be abolished by inhibitors of the scavenger receptor pathway. In addition to the receptor-mediated uptake of cholesterol from the acLDL-dispersion complex, it was observed that approx. 30% of the total cholesterol uptake from the complex was via non-specific components, including surface transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.