Abstract

The incretin hormones, glucose-dependent insulinotropic polypeptide (GIP) and glucagonlike peptide–1 (GLP-1), which are secreted by cells of the gastrointestinal tract in response to meal ingestion, exercise important glucoregulatory effects, including the glucose-dependent potentiation of insulin secretion by pancreatic β-cells. Research on the defective incretin action in type 2 diabetes mellitus suggests that the observed loss of insulinotropic activity may be due primarily to a decreased responsiveness of β-cells to GIP. GLP-1 does retain efficacy, albeit not at physiologic levels. Accordingly, augmentation of GLP-1 is a logical therapeutic strategy to ameliorate this deficiency, although the short metabolic half-life of the native hormone renders direct infusion impractical. GLP-1 receptor agonists that resist degradation by the enzyme dipeptidyl peptidase–4 (DPP-4) and have protracted-action kinetics have been developed, and DPP-4 inhibitors that slow the enzymatic cleavage of native GLP-1 provide alternative approaches to enhancing incretin-mediated glucose control. However, GLP-1 receptor agonists and DPP-4 inhibitors are premised on highly divergent mechanisms of action. DPP-4 is ubiquitously expressed in many tissues and is involved in a wide range of physiologic processes in addition to its physiologic influence on incretin hormone biological activity. GLP-1 receptor agonists provide a pharmacologic level of GLP-1 receptor stimulation, whereas DPP-4 inhibitors appear to increase levels of circulating GLP-1 to within the physiologic range. This article examines the physiology of the incretin system, mechanistic differences between GLP-1 receptor agonists and DPP-4 inhibitors used as glucose-lowering agents in the treatment of type 2 diabetes, and the implications of these differences for treatment. The results of recent head-to-head trials are reviewed, comparing the effects of incretin-based therapies on a range of clinical parameters, including glycemia, β-cell function, weight, and cardiovascular function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.