Abstract

In this paper, we consider the problem of feasibly integrating new pick-up and delivery requests into existing vehicle itineraries in a dynamic, dial-a-ride problem (DARP) setting. Generalizing from previous work in oversubscribed task scheduling, we define a controlled iterative repair search procedure for finding an alternative set of vehicle itineraries in which the overall solution has been feasibly extended to include newly received requests. We first evaluate the performance of this technique on a set of DARP feasibility benchmark problems from the literature. We then consider its use on a real-world DARP problem, where it is necessary to accommodate all requests and constraints must be relaxed when a request cannot be feasibly integrated. For this latter analysis, we introduce a constraint relaxation post processing step and consider the performance impact of using our controlled iterative search over the current greedy search approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.