Abstract

Existing single-lane free flow (SLFF) tolling systems either heavily rely on contact-based treadle sensor to detect the number of vehicle wheels or manual operator to classify vehicles. While the former is susceptible to high maintenance cost due to wear and tear, the latter is prone to human error. This paper proposes a vision-based solution to SLFF vehicle classification by adapting a state-of-the-art object detection model as a backbone of the proposed framework and an incremental training scheme to train our VehicleDetNet in a continual manner to cater the challenging problem of continuous growing dataset in real-world environment. It involved four experiment set-ups where the first stage involved CUTe datasets. VehicleDetNet is utilized for the framework of vehicle detection, and it presents an anchorless network which enable the elimination of the bounding boxes of candidates’ anchors. The classification of vehicles is performed by detecting the vehicle’s location and inferring the vehicle’s class. We augment the model with a wheel detector and enumerator to add more robustness, showing improved performance. The proposed method was evaluated on live dataset collected from the Gombak toll plaza at Kuala Lumpur-Karak Expressway. The results show that within two months of observation, the mean accuracy increases from 87.3 % to 99.07 %, which shows the efficacy of our proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.