Abstract

Purpose. Investigation of a moisture frequency transducer based on a moisture-sensitive capacitive element of a cylindrical structure with mesh electrodes for a system for measuring the amount and parameters of crude oil. Methodology. When constructing a moisture-sensitive element, an oscillatory method for measuring humidity was applied to achieve high sensitivity and accuracy while maintaining a low cost of the device. A moisture sensitive capacitive sensor based on a cylindrical structure with mesh electrodes was introduced into the measuring generator system based on a transistor structure with a negative differential resistance. Findings. Analytical expressions are obtained to describe the dielectric constant of an inhomogeneous mixture of water and oil. Using these equations, the capacitance of a moisture-sensitive sensor with mesh electrodes is calculated as a dependence of the moisture content of crude oil. It was determined that the capacitance of the moisture sensitive sensor increased from 20 to 44 pF when the mass moisture of crude oil changed from 0 to 30%. The sensitivity of the developed capacitive sensor is 0.8 pF/% when using a measuring device in the form of a crude oil pipeline with a diameter of 50 millimeters. Originality. A mathematical model has been developed for the primary transducer of the moisture content of crude oil based on a cylindrical capacitor structure with net-like electrodes, which allows determining the value of the capacitance of the primary transducer of the moisture content of crude oil. A self-oscillator device for controlling the moisture content of crude oil has been developed on the basis of the structure of bipolar and field-effect transistors with a cylindrical capacitor structure with mesh electrodes. Practical value. Circuitry solutions for a moisture transducer for crude oil have been developed. The results of experimental studies showed that for the selected version of the moisture converter circuit, the output signal frequency decreased in the range from 1.617 to 1.27 MHz with a change in the mass moisture content of the Turkmen mixture from 0 to 30%, respectively, and is close to a linear dependence. The wide frequency range of the output signal of the secondary converter with the frequency output of the measured information increases the accuracy of moisture measurement in crude oil by an order of magnitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.