Abstract

The wetland-microbial fuel cell (MFC) is a novel electricity generating technology. However, these systems can generate only limited electric energy. Since nitrification is a key mechanism driving electrical power in wetland-MFC systems, an effective nitrifying bacteria, Bacillus thuringiensis, was used to inoculate a wetland-MFC to enhance the maximum power density of the system. B. thuringiensis effectively enhanced the maximum power density, producing about 20–35 mW m−2 of maximum power density. Interestingly, over the first 120 days of operation, the wetland-MFC system with only B. thuringiensis generated more power than a system containing an Echinodosus cordifolius plant in addition to B. thuringiensis, because E. cordifolius can took up nitrate (NO3−) and phosphate (PO43−) in system's solution. Nitrate and PO43− act as important anions driving electric current in the system. After 120 days of operation though, the combined E. cordifolius and B. thuringiensis system maintained 20–35 mW m−2 maximum power density and the maximum power density of the system only inoculated with B. thuringiensis decreased continuously. Gene (16S rRNA) copy numbers for B. thuringiensis showed that when E. cordifolius was presented, the bacterium was able to continue growing after 120 days of operation. B. thuringiensis did not grow as well after 120 days in the system that did not contain a plant. This study presents a strategy for enhancing electric power output from a wetland-MFC by inoculating the system with B. thuringiensis and maintaining the bacterium's population with the support of an E. cordifolius plant. The result clearly show that B. thuringiensis can enhance electric power generation in the presence of the plant and the system can self-sustain for longer than 180 days of operation while producing 20–35 mW m−2 maximum power density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.