Abstract

A series of experiments to determine the optimum laser-beam radius by balancing the reduction of cross-beam energy transfer (CBET) with increased illumination nonuniformities shows that the hydrodynamic efficiency is increased by ∼35%, which leads to a factor of 2.6 increase in the neutron yield when the laser-spot size is reduced by 20%. Over this range, the absorption is measured to increase by 15%, resulting in a 17% increase in the implosion velocity and a 10% earlier bang time. When reducing the ratio of laser-spot size to a target radius below 0.8, the rms amplitudes of the nonuniformities imposed by the smaller laser spots are measured at a convergence ratio of 2.5 to exceed 8 μm and the neutron yield saturates despite increasing absorbed energy, implosion velocity, and decreasing bang time. The results agree well with hydrodynamic simulations that include both nonlocal and CBET models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.