Abstract

The aminoglycoside kasugamycin, which has previously been shown to inhibit initiation of protein biosynthesis in vitro, also affects translational accuracy in vitro. This is deduced from the observation that the drug decreases the incorporation of histidine relative to alanine into the coat protein of phage MS2, the gene of which is devoid of histidine codons. The read-through of the MS2 coat cistron, due to frameshifts in vitro, is also suppressed by the antibiotic. In contrast, streptomycin enhances histidine incorporation and read-through in this system. The effects of kasugamycin take place at concentrations that do not inhibit coat protein biosynthesis. Kasugamycin-resistant mutants (ksgA) lacking dimethylation of two adjacent adenosines in 16 S ribosomal RNA, show an increased leakiness of nonsense and frameshift mutants (in the absence of antibiotic). They are therefore phenotypically similar to previously described ribosomal ambiguity mutants (ram).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.