Abstract

The pulmonary damage caused by prolonged exposure to high oxygen concentrations is accompanied by lung inflammation, which may contribute to the expression of hyperoxic lung injury. In turn, adhesion molecules are crucial for initiating inflammatory responses. The goal of the present study was to investigate the association of contents of soluble adhesion molecules in plasma or alveolar fluids of hyperoxic rats with lung expression of adhesion molecules, lung inflammation and lung injury. We exposed adult Sprague-Dawley rats to > 95% oxygen for up to 60 h and measured the contents of intercellular adhesion molecule-1 (ICAM-1) and E-Selectin in plasma and lung tissue expression of the same molecules, and we assessed lung myeloperoxidase (MPO) activities and lung water contents as indices of lung inflammation and injury, respectively. We also assessed ICAM-1 content in lavage samples, because ICAM-1 may be shed from the alveolar epithelium. Lung water was elevated at 60 h of hyperoxia-exposure, and this effect was preceded by increases in lung MPO activities. Lung ICAM-1 expression was more than doubled at 48 h, although soluble ICAM-1 contents were not elevated in plasma or lavage. Soluble E-Selectin was increased by more than 50% at 24 h of hyperoxia-exposure, while lung expressions of E-Selectin were not increased until 48 h. The sequence of the events observed in the present studies suggests that E-Selectin contributes to lung inflammation in hyperoxia and the acceleration of lung injury immediately following the inflammatory response suggests a pivotal role for inflammation in this injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.