Abstract

Understanding how plants adapt to shifting water availability is imperative for predicting ecosystem vulnerability to drought. However, the spatial–temporal dynamics of the plant–water relationship remain uncertain. In this study, we employed the latest Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI4g), an updated version succeeding GIMMS NDVI3g spanning from 1982 to 2022. We integrated this dataset with the multiple scale Standardized Precipitation Evapotranspiration Index (SPEI 1 to 24) to investigate the spatial–temporal variability of sensitivity and lag in vegetation growth in response to water variability across China. Our findings indicate that over 83% of China’s vegetation demonstrates positive sensitivity to water availability, with approximately 66% exhibiting a shorter response lag (lag < 1 month). This relationship varies across aridity gradients and diverges among plant functional types. Over 66% of China’s vegetation displays increased sensitivity to water variability and 63% manifests a short response lag to water changes over the past 41 years. These outcomes significantly contribute to understanding vegetation dynamics in response to changing water conditions, implying a heightened susceptibility of vegetation to drought in a future warming world.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.