Abstract

Cytogenetic studies by in situ hybridization (ISH) have proven to be valuable for gene mapping on banded chromosomes when combined with fluorescence microscopy (FISH). However, even under the best conditions, FISH technology has a resolving power inherent to light of just 0.2 µm. Its utilization is further limited by the diffusion of light coming from the fluorescent signal which covers an area considerably larger than the target DNA sequence. The development of new ISH protocols applied to electron microscopy (EMISH) should increase the resolution for cytogenetic mapping and fine chromosomal structure studies. Despite these advances, few attempts have been made which exploit this increased resolution. Here we present a detailed analysis of ISH signals obtained by fluorescence and electron microscopy methodologies to demonstrate and define the higher sensitivity obtainable by electron microscopy. This comparative study was conducted with probes of different origins: telomeric, classical satellite, alpha satellite, and single-copy DNA sequences, which provide a good reference point for later studies. We were also able to map a 200-bp cDNA probe by EMISH. This study assesses the nature of the resolution and the better definition of the EMISH signal, which confirms the greater resolution of electron microscopy as compared with that achieved with light microscopy. It also indicates that better delineation of two closely linked sequences is achieved at the electron microscopy level.Key words: In situ hybridization, electron microscopy, fluorescence microscopy, localization, repetitive and small single-copy probes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.