Abstract

We synthesized up to Ge0.914Sn0.086 alloys on (100) GaAs/InyGa1−yAs buffer layers using molecular beam epitaxy. The buffer layers enable engineered control of strain in the Ge1−xSnx layers to reduce strain-related defects and precipitation. Samples grown under similar conditions show a monotonic increase in the integrated photoluminescence (PL) intensity as the Sn composition is increased, indicating changes in the bandstructure favorable for optoelectronics. We account for bandgap changes from strain and composition to determine a direct bandgap bowing parameter of b = 2.1 ± 0.1. According to our models, these are the first Ge1−xSnx samples that are both direct-bandgap and exhibit PL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.