Abstract

Pyrenophora teres f. maculata (Ptm) is a fungal pathogen that causes the spot form of net blotch on barley and leads to economic losses in many of the world's barley-growing regions. Isolates of Ptm exhibit varying levels of aggressiveness that result in quantifiable changes in the severity of the disease. Previous research on plant-pathogen interactions has shown that such divergence is reflected in the proteome and secretome of the pathogen, with certain classes of proteins more prominent in aggressive isolates. Here we have made a detailed comparative analysis of the secretomes of two Ptm isolates, GPS79 and E35 (highly and mildly aggressive, respectively) using a proteomics-based approach. The secretomes were obtained in vitro using media amended with barley leaf sections. Secreted proteins therein were harvested, digested with trypsin, and fractionated offline by HPLC prior to LC-MS in a high-resolution instrument to obtain deep coverage of the proteome. The subsequent analysis used a label-free quantitative proteomics approach with relative quantification of proteins based on precursor ion intensities. A total of 1175 proteins were identified, 931 from Ptm and 244 from barley. Further analysis revealed 160 differentially abundant proteins with at least a two-fold abundance difference between the isolates, with the most enriched in the aggressive GPS79 secretome. These proteins were mainly cell-wall (carbohydrate) degrading enzymes and peptidases, with some oxidoreductases and other pathogenesis-related proteins also identified, suggesting that aggressiveness is associated with an improved ability of GPS79 to overcome cell wall barriers and neutralize host defense responses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.