Abstract

We perfused an isolated rabbit hindlimb preparation with suspensions of human erythrocytes (RBC) having different O2 affinities. Our objective was to compare the effect of changes in P50, the PO2 at which hemoglobin is 50% saturated, on tissue O2 consumption during severe hypoxemia. A high-affinity (HA) group (n = 9) was perfused with RBC incubated in NaCNO (P50 = 21.4 +/- 1.9 Torr). This was compared with a low-affinity (LA) group (n = 9) perfused with rejuvenated RBC (P50 = 31.1 +/- 1.8 Torr). The arterial PO2 of the perfusate was decreased to approximately 24 Torr in both preparations. Perfusion flow and hemoglobin concentration were maintained constant. During hypoxemia arterial O2 saturation and total O2 transport (TO2) were greater in the HA than the LA group (P less than 0.05). O2 consumption and effluent venous PO2 decreased with hypoxemia in both groups to similar levels. Consequently, the LA group showed a greater O2 extraction ratio than the HA group (P less than 0.05). The ratio of phosphocreatine to inorganic phosphate, measured with 31P magnetic resonance spectroscopy, decreased at a comparable rate in both groups. As shown by a mathematical model of peripheral O2 transport, these experimental results can be explained on the basis of peripheral limitation to O2 diffusion. We conclude that increased hemoglobin affinity does not appreciably improve tissue oxygenation in hypoxemia, since the increase in TO2 is offset by diffusion limitation at the tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.