Abstract

Damage-associated molecular pattern molecules such as high-mobility group box 1 protein (HMGB1) and heat shock protein 70 (HSP70) have been implicated in the pathogenesis of asthma. The aim of our study was to examine the induced sputum and plasma concentrations of HSP70 in asthmatic patients to determine their relationship with airway obstruction. Thirty-four healthy controls and 56 patients with persistent bronchial asthma matched for gender and age were enrolled in this study. Spirometry measurements were performed before sputum induction. HSP70 levels in induced sputum and plasma were measured using the ELISA Kit. Sputum and plasma concentrations of HSP70 in asthmatics patients were significantly higher than that in control subjects (sputum, (0.88ng/ml (0.27-1.88ng/ml) versus 0.42ng/ml (0.18-0.85ng/ml), p < 0.001); plasma, (0.46ng/ml (0.20-0.98ng/ml) versus 0.14ng/ml (0.11-0.37ng/ml), p < 0.001) and were significantly negatively correlated with forced expiratory volume in 1s (FEV1), FEV1 (percent predicted), and FEV1/FVC in all 90 participants and 56 patients with asthma. There were no significant differences in HSP70 levels between patients with eosinophilic and non-eosinophilic asthma. HSP70 levels in plasma were positively correlated with neutrophil count, and HSP70 levels in induced sputum were positively correlated with lymphocyte count. In multivariate analysis, independent predictors of sputum HSP70 were diseases and disease severity but not smoking, age, or gender, and independent predictors of plasma HSP70 were also diseases and disease severity. In conclusion, this study indicates that induced sputum and plasma HSP70 could serve as a useful marker for assessing the degree of airway obstruction in patients with asthma. However, further investigation is needed to establish the role of circulating and sputum HSP70 in the pathogenesis of asthma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.