Abstract

A theoretical model for the fracture toughness of ceramics is developed which takes into account such energy-dissipative mechanisms as stress-induced microcracking or phase transformation. To establish the general fracture criterion, a Griffith-type energy balance is employed. This energy balance comprises the elastic energy, the fracture surface work consumed in the process zone at the crack tip, the energy dissipated in the dissipation zone and the energy stored by residual stresses. Stress-induced microcracking is considered in more detail. An expression for the dependence of the fracture toughness on the density of microcracks, the amount of residual stresses caused by thermal expansion mismatch between the ceramic matrix and small particles embedded in it and the volume fraction of these particles is derived. The final results are used to state conditions necessary for the fracture toughness to be increased. The theory agrees well with experimental results taken from literature (alumina with zirconia particles).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.