Abstract

Volume mixing ratio profiles of COF2 have been derived through most of the stratosphere between 30°N and 54°S from series of 0.01‐cm−1 resolution infrared solar spectra recorded in the occultation mode by the atmospheric trace molecule spectroscopy (ATMOS) instrument during the ATLAS 1 space shuttle mission of March–April 1992. When compared with similar results obtained from the ATMOS/Spacelab 3 mission of April–May 1985, the cumulative increase in the burden of COF2 in the middle and upper stratosphere was found to be 67% for that 7‐year time interval. By combining a subset of these COF2 results with upper stratospheric concentrations of HF also derived from the ATMOS observations, it was further found that the budget of inorganic fluorine above 35 km altitude increased by (6 ±10)% over the 1985–1992 time interval, which corresponds to an average exponential rate of increase of (6.7±1.1)% yr−1, or a linear rate of increase referenced to 1985 of (8.5±1.3) % yr−1 at the 1σ confidence level. The total inorganic F atom volume mixing ratio found in the upper stratosphere for 1985 and 1992 and the increase during this period mirror the rise in man‐made fluorine‐bearing compounds at the ground during the early to mid 1980s. This demonstrates the negligible impact of natural sources of fluorine, in particular volcanic activity, on the observed change of F in the upper stratosphere. Implications of the present findings and comparison with model results are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.