Abstract

Following a meal, a transient increase in splanchnic blood flow occurs that can result in increased exposure to orally administered high-extraction drugs. Typically, physiologically based pharmacokinetic (PBPK) models have incorporated this increase in blood flow as a time-invariant fed/fasted ratio, but this approach is unable to explain the extent of increased drug exposure. A model for the time-varying increase in splanchnic blood flow following a moderate- to high-calorie meal (TV-Q Splanch) was developed to describe the observed data for healthy individuals. This was integrated within a PBPK model and used to predict the contribution of increased splanchnic blood flow to the observed food effect for two orally administered high-extraction drugs, propranolol and ibrutinib. The model predicted geometric mean fed/fasted AUC and C max ratios of 1.24 and 1.29 for propranolol, which were within the range of published values (within 1.0-1.8-fold of values from eight clinical studies). For ibrutinib, the predicted geometric mean fed/fasted AUC and C max ratios were 2.0 and 1.84, respectively, which was within 1.1-fold of the reported fed/fasted AUC ratio but underestimated the reported C max ratio by up to 1.9-fold. For both drugs, the interindividual variability in fed/fasted AUC and C max ratios was underpredicted. This suggests that the postprandial change in splanchnic blood flow is a major mechanism of the food effect for propranolol and ibrutinib but is insufficient to fully explain the observations. The proposed model is anticipated to improve the prediction of food effect for high-extraction drugs, but should be considered with other mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.