Abstract

3D printing fabrication has become a dominant approach for the creation of tissue engineering constructs as it is accurate, fast, reproducible and can produce patient-specific templates. In this study, 3D printing is applied to create nanocomposite scaffold of polylactic acid (PLA)/hardystonite (HT)-graphene oxide (GO). GO is utilized as a coupling agent of alkaline treated HT nanoparticles within PLA matrix. The addition of HT-GO nanoparticles of up to 30 wt% to PLA matrix was found to increase the degradability from 7.33 ± 0.66 to 16.03 ± 1.47 % during 28 days. Also, the addition of 20 wt% of HT-GO nanoparticles to PLA scaffold (PLA/20HTGO sample) significantly increased the compressive strength (from 7.65 ± 0.86 to 14.66 ± 1.01 MPa) and elastic modulus (from 94.46 ± 18.03 to 189.15 ± 10.87 MPa). The apatite formation on the surface of nanocomposite scaffolds in simulated body fluid within 28 days confirmed the excellent bioactivity of nanocomposite scaffolds. The MG63 cell adhesion and proliferation and, also, the rat bone marrow mesenchymal stem cells osteogenic differentiation were highly stimulated on the PLA/20HTGO scaffold. According to the sum of results obtained in the current study, the optimized PLA/20HTGO nanocomposite scaffold is highly promising for hard tissue engineering applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.