Abstract

The development of efficient heterogeneous catalysts with multiselectivity (e.g., enantio- and chemoselectivity) has long been sought after but with limited progress being made so far. To achieve enantio- and chemoselectivity in a heterogeneous system, as inspired by enzymes, we illustrate herein an approach of creating an enzyme-mimic region (EMR) within the nanospace of a metal-organic framework (MOF) as exemplified in the context of incorporating a chiral frustrated Lewis pair (CFLP) into a MOF with a tailored pore environment. Due to the high density of the EMR featuring the active site of CFLP and auxiliary sites of the hydroxyl group/open metal site within the vicinity of CFLP, the resultant EMR@MOF demonstrated excellent catalysis performance in heterogeneous hydrogenation of α,β-unsaturated imines to afford chiral β-unsaturated amines with high yields and high enantio- and chemoselectivity. The role of the hydroxyl group/open metal site in regulating chemoselectivity was proved by the observation of a catalyst-substrate interaction experimentally, which was also rationalized by computational results. This work not only contributes a MOF as a new platform for multiselective catalysis but also opens a promising avenue to develop heterogeneous catalysts with multiselectivity for challenging yet important transformations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.