Abstract

Recently, several authors have proposed the use of linear regression models in cost-effectiveness analysis. In this paper, by modelling costs and outcomes using patient and Health Centre covariates, we seek to identify the part of the cost or outcome difference that is not attributable to the treatment itself, but to the patients’ condition or to characteristics of the Centres. Selection of the covariates to be included as predictors of effectiveness and cost is usually assumed by the researcher. This behaviour ignores the uncertainty associated with model selection and leads to underestimation of the uncertainty about quantities of interest. We propose the use of Bayesian model averaging as a mechanism to account for such uncertainty about the model. Data from a clinical trial are used to analyze the effect of incorporating model uncertainty, by comparing two highly active antiretroviral treatments applied to asymptomatic HIV patients. The joint posterior density of incremental effectiveness and cost and cost-effectiveness acceptability curves are proposed as decision-making measures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.