Abstract

Surface symmetry breaking and disorder have been recently explored to overcome operation bandwidth, unwanted diffraction, and polarization dependence issues in the conventional metasurface designs thanks to their increasing degrees of design freedom. However, efficient full‐wave simulation and optimization of electrically large electromagnetic structures have been a longstanding problem. Herein, an interactive learning approach is developed to build new meta‐atom datasets which include the effect of mutual coupling. A deep learning‐based model is developed to extract features of incident/reflection waves and their neighboring interaction responses from a limited number of known meta‐atoms. Finally, the deep neural network is incorporated with optimization algorithms to design, as an example, large‐scale metasurfaces for beam manipulation and wideband scattering reduction. The results demonstrate that the proposed architecture can be successfully applied to rapidly design aperture‐efficient metasurfaces or metalenses at large scales of over tens of thousands of meta‐atoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.