Abstract

Numerous statistical methods have been developed to explore genomic imprinting and maternal effects by identifying parent-of-origin patterns in complex human diseases. However, because most of these methods only use available locus-specific genotype data, it is sometimes impossible for them to infer the distribution of parental origin of a variant allele, especially when some genotypes are missing. In this article, we propose a two-step approach, LIMEhap, to improve upon a recent partial likelihood inference method. In the first step, the distribution of the missing genotypes is inferred through the construction of haplotypes by using information from nearby loci. In the second step, a partial likelihood method is applied to the inferred data. To substantiate the validity of the proposed procedures, we simulated data in a genomic region of gene GPX1. The results show that, by borrowing genetic information from nearby loci, the power of the proposed method can be close to that with complete genotype data at the locus of interest. Since the inference on the genotype distribution is made under the assumption of Hardy-Weinberg Equilibrium (HWE), we further studied the robustness of LIMEhap to violation of HWE. Finally, we demonstrate the utility of LIMEhap by applying it to an autism dataset.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.