Abstract

Deep-learning-based image-recognition systems have been widely deployed on mobile devices in today’s world. In recent studies, however, deep learning models are shown vulnerable to adversarial examples. One variant of adversarial examples, called the adversarial patch, draws researchers’ attention due to its strong attack abilities. Though adversarial patches achieve high attack success rates, they are easily being detected because of the visual inconsistency between the patches and the original images. Besides, it usually requires a large amount of data for adversarial patch generation in the literature, which is computationally expensive and time consuming. To tackle these challenges, we propose an approach to generate inconspicuous adversarial patches with one single image. In our approach, we first decide the patch locations based on the perceptual sensitivity of victim models, then produce adversarial patches in a coarse-to-fine way by utilizing multiple-scale generators and discriminators. The patches are encouraged to be consistent with the background images with adversarial training while preserving strong attack abilities. Our approach shows the strong attack abilities in white-box settings and the excellent transferability in black-box settings through extensive experiments on various models with different architectures and training methods. Compared to other adversarial patches, our adversarial patches hold the most negligible risks to be detected and can evade human observations, which is supported by the illustrations of saliency maps and results of user evaluations. Finally, we show that our adversarial patches can be applied in the physical world.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.