Abstract

Multi-Relaxation-Time Lattice Boltzmann Method (MRT LBM) is of better numerical stability and has attracted more and more research interests. The previous MRT LBM included artificial compressible effects. To overcome the disadvantage, an incompressible MRT LBM has been proposed in two dimensions recently. In this article, we present incompressible MRT LBMs in 3-D space, with example of nineteen-velocity. The equilibria in momentum space are derived from an earlier incompressible Lattice Bhatnagar-Gross-Krook (LBGK) model proposed by Guo et al. Through the Chapman-Enskog (C-E) expansion, the incompressible Navier-Stokes (N-S) equations can be recovered without artificial compressible effects. Simulations of a lid-driven cavity flow in three dimensions with Re = 1 000, 2 000 and 3 200 are performed. The simulation results agree with the existing data and clearly demonstrate better numerical stability of the presented model over the incompressible LBGK model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.