Abstract

In this paper we investigate scattering problem for a quantum graph (a ring), connected with two semi-infinite leads via a Dirac delta function at boundary. We prove incompleteness of the system of resonance states in $$L_2$$ on finite subgraph for the Kirchhoff coupling condition at the vertex and discuss a relation with the factorization of the characteristic function in Sz-Nagy functional model. The sensitivity of the incompleteness property to variation of the operator or the graph structure is considered. The cases of the Landau and the Dirac operators at the graph edges demonstrate the same completeness/incompleteness property as the Schrodinger case. At the same time, small variation of the graph structure restores the completeness property.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.