Abstract

The mid-infrared band of 3~5 μm wavelength is a very important atmospheric window. The mid-infrared lasers are widely applied in laser countermeasure, laser illumination and trace gas detection. At present, the mid-infrared laser sources mainly include solid-state optical parametric oscillation lasers, fiber lasers, mid-infrared supercontinuum spectrum laser and mid-infrared semiconductor lasers, i.e. quantum cascade lasers. In these lasers, quantum cascade laser is the only one that can realize the conversion from electricity to light. In this paper, the method of incoherent beam combination of mid-infrared semiconductor lasers is studied. Two lasers are combined in a common aperture by using a single polarizer based on the polarization characteristics of the output laser of quantum cascade laser. Results show that the incoherent power superposition of mid-infrared quantum cascade lasers can be achieved by polarization beam combining, and the beam combining efficiency is not less than 90%. The farfield divergence angle is about 5 mrad, which is consistent with the farfield divergence angle of the two sub-beams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.