Abstract

Standard molecular simulation methods based on classical force fields typically assume only a fixed protonation state of systems. This assumption generally only permits a limited treatment of pH effects, for example, consideration of extreme acidic/basic conditions or situations where a small number of protonation states can be explicitly enumerated. Importantly, the standard approach cannot be scaled to chemical systems with a large number of titrateable sites such as lipid head groups or assemblies of protein subunits. Here we describe the development and application of a scalable and extensible method for including pH effects in molecular dynamics simulations. In contrast to other constant pH methods, the new method, based on a hybrid of non-equilibrium molecular dynamics and Monte Carlo, can be easily scaled to handle large heterogeneous systems, i.e., not only globular proteins. We present a validation of the method and its implementation in the program NAMD. Finally, we also present proof of concept studies on large biomolecular membrane systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.