Abstract

Effects of the addition of a cationic amino acid-based synthetic amphiphile, arginine N-lauroyl amide dihydrochloride (ALA), to a lipid-based transfection formulation have been investigated. It is shown that the inclusion of ALA results in a substantial enhancement of the transfection capability of lipoplexes prepared with liposomes of 1-palmitoyl-2-oleoyl-sn-glycero-3-ethylphosphocholine and cholesterol, which themselves mediate highly efficient transfection. A possible explanation for the increased biological activity is that ALA adsorbed to the surface of the DNA-lipid complexes is involved in triggering internalization. However, in order to identify possible additional factors underlying the enhanced transfection efficiency, the physical properties of formulations with and without ALA were characterized using cryo-transmission electron microscopy, dynamic light scattering, and an ethidium bromide intercalation assay. ALA seems to have limited influence on the initial internal structure of the complexes and the protection of DNA, but its presence is found to decrease the average effective size of the dispersed particles; this change in size may be important in improving the biological activity. Furthermore, ALA can act to influence the transfection efficiency of the formulation by promoting the release of DNA following internalization in the transfected cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.