Abstract

With the advent of advanced geographical informational systems (GIS) and remote sensing technologies in recent years, topographic (elevation, slope, aspect, and flow accumulation) and vegetation attributes are routinely available from digital elevation models (DEMs) and normalized difference vegetation index (NDVI) at different spatial (remote sensor footprint, watershed, regional) scales. Based on the correlation of soil distribution and vegetation growth patterns across a topographically heterogeneous landscape, this study explores the use of topographic and vegetation attributes in addition to pedologic attributes to develop pedotransfer functions (PTFs) for estimating soil hydraulic properties in the Southern Great Plains of the USA. The extensive Southern Great Plains 1997 (SGP97) hydrology experiment database was used to derive these functions by using artificial neural networks. Eighteen models combining bootstrapping technique with artificial neural networks were developed in a hierarchical manner to predict the soil water contents at eight different soil water potentials (θ at 5, 10, 333, 500, 1000, 3000, 8000, and 15 000 cm) and the van Genuchten hydraulic parameters (θr, θs, α, n). The performance of the neural network models was evaluated using the Spearman correlation coefficient between the observed and the predicted values and root mean square error (RMSE). Although variability exists within bootstrapped replications, improvements (of different levels of statistical significance) were achieved with certain input combinations of basic soil properties, topography and vegetation information compared with using only the basic soil properties as inputs. Topography (DEM) and vegetation (NDVI) attributes at finer scales were useful to capture the variations within the soil mapping units for the SGP97 region dominated by perennial grass cover.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.