Abstract

The cellular volume of crypts isolated from 2- to 3-week-old mouse small intestine has been measured to assess the capacity of the epithelial cells to respond to secretagogues. Vasoactive intestinal polypeptide (VIP) or carbachol, respectively cAMP- and calcium-mediated secretagogues, produced a reduction crypt volume attributed to KCl loss through channels activated by the agonists. Consistent with the participation of separate chloride channels, 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) blocked the carbachol- but not the VIP-induced volume decrease, whilst glibenclamide abolished the VIP effect without affecting the carbachol-induced volume decrease. Animals homozygous for a disrupted cftr gene, introduced by gene targeting, were also used as the source for crypt isolation. In these CFTR (-/-) crypts. VIP failed to elicit any reduction in cellular volume, while the response to carbachol was indistinguishable from that seen in crypts from age-matched control animals. These results are consistent with murine CFTR being a cAMP-activated chloride channel inhibited by glibenclamide and resistant to DIDS. A separate chloride conductance activated by calcium mobilization in small-intestinal crypts appears to be independent of CFTR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.