Abstract

Specific inactivation of TGFbeta signaling in neural crest stem cells (NCSCs) results in cardiovascular defects and thymic, parathyroid, and craniofacial anomalies. All these malformations characterize DiGeorge syndrome, the most common microdeletion syndrome in humans. Consistent with a role of TGFbeta in promoting non-neural lineages in NCSCs, mutant neural crest cells migrate into the pharyngeal apparatus but are unable to acquire non-neural cell fates. Moreover, in neural crest cells, TGFbeta signaling is both sufficient and required for phosphorylation of CrkL, a signal adaptor protein implicated in the development of DiGeorge syndrome. Thus, TGFbeta signal modulation in neural crest differentiation might play a crucial role in the etiology of DiGeorge syndrome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.