Abstract

Gram-negative bacterial infection or treatment of animals with bacterial lipopolysaccharide (LPS) induces a catabolic state with proteolysis, liver injury and an inhibition of the insulin-like growth factor-I (IGF-I) system. The purpose of this work was to elucidate the role of Kupffer cells in LPS-induced inhibition of the IGF-I/IGF-binding protein-3 (IGFBP-3) system. Adult male Wistar rats were either pretreated with the Kupffer cell inhibitor gadolinium chloride (10 mg/kg, i.v., 24 h prior to LPS exposure) or saline vehicle. Rats received two i.p. injections of 1 mg/kg LPS (at 17:30 and 08:30 h the following day) and were killed 4 h after the second injection. LPS administration induced a significant decrease in body weight and in serum concentrations of IGF-I and IGFBP-3 (P < 0.01), as well as in their gene expression in the liver. LPS-injected rats had increased serum concentrations of ACTH, corticosterone (P < 0.05), tumour necrosis factor-alpha (TNF-alpha) and nitrites (P < 0.01). Pretreatment of the animals with gadolinium chloride blocked the inhibitory effect of LPS on body weight, and on serum concentrations of IGF-I, IGFBP-3 and nitrites, as well as growth hormone receptor (GHR), IGF-I and IGFBP-3 gene expression in the liver. In contrast, gadolinium chloride administration did not modify the stimulatory effect of LPS on serum concentrations of ACTH, corticosterone and TNF-alpha. These results suggest that Kupffer cells are important mediators in the inhibitory effect of LPS on GHR, IGF-I and IGFBP-3 gene expression in the liver, leading to a decrease in serum concentrations of IGF-I and IGFBP-3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.