Abstract

For bovine serum amine oxidase, two different mechanisms of substrate-induced inactivation have been proposed. One consists of a slow oxidation by H2O2 of a conserved residue in the reduced enzyme after the fast turnover phase [Pietrangeli, P., Nocera, S., Fattibene, P., Wang, X.T., Mondovì, B. & Morpurgo, L. (2000) Biochem. Biophys. Res. Commun.267, 174-178] and the other of the oxidation by H2O2 of the dihydrobenzoxazole in equilibrium with the product Schiff base, during the catalytic cycle [Lee, Y., Shepard, E., Smith, J., Dooley, D.M. & Sayre, L.M. (2001) Biochemistry40, 822-829]. To discriminate between the two mechanisms, the inactivation was studied using Lathyrus cicera (red vetchling) amine oxidase. This, in contrast to bovine serum amine oxidase, formed the Cu+-semiquinolamine radical with a characteristic UV-vis spectrum when oxygen was exhausted by an excess of any tested amine in a closed cuvette. The inactivation, lasting about 90 min, was simultaneous with the radical decay and with the formation of a broad band (shoulder) at 350 nm. No inactivation occurred when a thousand-fold excess of amine was rapidly oxidized in an L. cicera amine oxidase solution stirred in open air. Thus, the inactivation is a slow reaction of the reduced enzyme with H2O2, following the turnover phase. Catalase protected L. cicera amine oxidase from inactivation. This effect was substrate-dependent, varying from full protection (benzylamine) to no protection (putrescine). In the absence of H2O2, a specific inactivating reaction, without formation of the 350 nm band, was induced by some aldehydes, notably putrescine. Some mechanisms of inactivation are proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.