Abstract

Worldwide, the increasing occurrence of toxins produced by cyanobacteria in water bodies used as source waters for drinking water has become an important public health issue. Microcystin-LR is one of the most commonly found cyanotoxins. A detailed evaluation of the free chlorine induced inactivation kinetics of extracellular microcystin-LR is presented in this study. Rate constants needed for chlorine inactivation of the toxin were derived from the data. The effects of varied pH, chlorine dose, toxin concentration, and temperature on the rate of inactivation were evaluated. Batch chlorination experiments were run using carbonate-buffered Milli-Q water at three different initial toxin concentrations (1, 2, and 8μg∕L), three different chlorine doses (1, 3, and 9mg∕L), and three different pH values (6.0, 7.5, and 9.0) at 11, 20 and 29°C. The study showed that extracellular microcystin-LR was inactivated by free chlorine and the inactivation rate was affected by pH. The highest inactivation rates were observed at pH 6.0 and the lowest at pH 9.0.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.