Abstract

In vivo clorgyline (5 mg/kg) and (-)-deprenyl (5 mg/kg) selectively inhibit monoamine oxidase (MAO) type A and B activities in rat brain hypothalamus and caudate nucleus using 5-hydroxytryptamine (5-HT), noradrenaline (NA), and beta-phenylethylamine (PEA) as substrates. Clorgyline induces a significant increase in NA concentrations of hypothalamus and caudate nucleus; however (-)-deprenyl is without effect. The combination of clorgyline and (-)-deprenyl at the above doses completely inhibits both forms of MAO, resulting in an even greater increase in NA levels in both brain areas than observed with clorgyline. The non-selective inhibitor tranylcypromine (5 mg/kg) produced a similar effect. Rats pretreated with the selective or the non-selective inhibitors but given L-DOPA (50 mg/kg) have a similar pattern of brain NA, but its concentrations are higher in both brain regions. The results indicate that although in vitro NA may be an exclusive substrate for MAO type A, in vivo, when this enzyme form is selectively inhibited, NA at high concentrations can be a substrate for MAO type B.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.