Abstract

Graphene-based nanomaterials (GBNs) are quickly revolutionizing modern electronics, energy generation and storage, clothing and biomedical devices. Due to GBN's variety of physical and chemical parameters that define their toxicity and their aggregation in suspension, interpreting its toxicology without accurate information on graphene's distribution and behavior in live organisms is challenging. In this work, we present a laser-based optical detection methodology for noninvasive detection and pharmacokinetics analysis of GBNs directly in blood flow in mice using in vivo photoacoustic (PA) flow cytometry (PAFC). PAFC provides unique insight on how chemical modifications of GBNs affect their distribution in blood circulation and how quickly they are eliminated from the flow. Overall, PAFC provided unique data crucial for understanding GBN toxicity through real-time detection of GBNs using their intrinsic light absorption contrast. Copyright © 2017 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.